Что такое аппаратное ускорение, зачем и как его отключить в Windows. Программно-аппаратная защита Поколения производительности ГП

Для обеспечения максимальной производительности и корректной работы используют аппаратные и программные средства, которые очень связаны между собой и четко взаимодействуют в разных направлениях. Сейчас коснемся рассмотрения аппаратных средств, поскольку изначально именно они занимают главенствующее положение в обеспечении работоспособности любой компьютерной или даже мобильной системы.

Аппаратные средства систем: общая классификация

Итак, с чем же мы имеем дело? На самом деле комплекс аппаратных средств знаком всем и каждому. По сути, многие пользователи называют его компьютерным «железом». Действительно, аппаратные средства - это именно «железные», а не программные компоненты любой компьютерной системы. В самом простом варианте классификации они разделяются на внутренние и внешние.

Кроме того, в таком разделении можно выделить три основных и наиболее содержательных класса устройств:

  • устройства ввода;
  • устройства вывода;
  • устройства хранения информации.

Естественно, отдельно стоит отметить и главные элементы компьютерных систем вроде материнской платы, процессора и т. д., не входящие ни в один из вышеперечисленных классов и являющиеся базовыми элементами, без которых ни один компьютер попросту работать не будет.

Базовые элементы компьютера

Описывая аппаратные средства любого компьютера, начать стоит с самого главного элемента - материнской платы, на которой расположены все внутренние элементы. И к ней же за счет применения разного рода разъемов и слотов подключаются внешние устройства.

Сегодня существует достаточно много разновидностей «материнок» и их производителей. Правда, такие платы для стационарных компьютеров и ноутбуков и по форме, и по расположению отдельных элементов могут различаться. Тем не менее суть их применения в компьютерных системах не меняется.

Второй по важности элемент - центральный процессор, который отвечает за быстродействие. Одной из главных характеристик является тактовая частота, выраженная в мега- или гигагерцах, а проще говоря, величина, определяющая, сколько элементарных операций может производить процессор за одну секунду. Нетрудно догадаться, что быстродействие есть не что иное, как отношение количества операций к числу тактов, которое необходимо для выполнения (вычисления) одной элементарной операции.

Аппаратные средства компьютера невозможно себе представить без планок оперативной памяти и жестких дисков, которые относятся к устройствам хранения. О них будет сказано несколько позже.

Программно-аппаратные средства

В современных компьютерах применяются и устройства гибридного типа, такие, например, как ПЗУ или постоянная энергонезависимая память CMOS, которая является основой базовой системы ввода/вывода, называемой BIOS.

Это не только «железный» чип, распложенный на материнской плате. В нем имеется собственная микропрограмма, позволяющая не только хранить неизменяемые данные, но и проводить тестирование внутренних компонентов и в момент включения компьютера. Наверное, многие владельцы стационарных ПК замечали, что в момент включения слышен сигнал системного динамика. Это как раз и свидетельствует о том, что проверка устройств прошла успешно.

Средства ввода информации

Теперь остановимся на устройствах ввода. На данный момент их разновидностей можно насчитать достаточно много, а судя по развитию IT-технологий, вскоре их станет еще больше. Тем не менее базовыми в этом списке принято считать следующие:

  • клавиатура;
  • мышь (трекпад для ноутбуков);
  • джойстик;
  • цифровая камера;
  • микрофон;
  • внешний сканер.

Каждое из этих устройств позволяет ввести разный тип информации. К примеру, с помощью сканера вводится графика, с помощью камеры - видеоизображение, на клавиатуре - текст и т. д. Однако и мышь, и трекпад в дополнение ко всему являются еще и контроллерами (манипуляторами).

Что касается клавиатуры, контролирующие функции в ней используются через кнопки или их сочетания. При этом можно получить и доступ к определенным функциям, параметрам и командам операционных систем или другого программного обеспечения.

Средства вывода информации

Аппаратные средства невозможно представить себе и без устройств вывода. В стандартном списке присутствуют следующие:

  • монитор;
  • принтер;
  • плоттер;
  • звуковая и видеосистема;
  • мультимедийный проектор.

Здесь основным является компьютерный монитор или экран ноутбука. Понятно ведь, что при современных методах объектно-ориентированного программирования взаимодействие с пользователем осуществляется через графический интерфейс, хотя в равной степени такая ситуация применима и к системам, в которых предполагается ввод команд. В любом случае пользователь должен видеть то, что отображается на экране.

Что же касается остальных элементов, они желательны, хотя и не обязательны (ну разве что графический адаптер, без которого современные системы могут и не работать).

Средства хранения информации

Наконец, один и самых важных классов - устройства хранения информации. Их наличие, будь то внутренние компоненты или внешние носители, просто обязательно. К этому классу относят следующие разновидности:

  • жесткий диск (винчестер);
  • оперативная память;
  • кэш-память;
  • внешние накопители (дискеты, USB-устройства).

Иногда сюда включают также систему BIOS с CMOS-памятью, однако, как уже было сказано выше, это скорее гибридные устройства, которые можно отнести в равной степени к разным категориям.

Безусловно, главное место здесь занимают жесткие диски и «оперативка». Жесткий диск - это аппаратное средство информации (вернее, средство ее хранения), ведь на нем она хранится постоянно, а в оперативной памяти - временно (при запуске или функционировании программ, копировании содержимого в и т. д.).

При выключении компьютера оперативная память автоматически очищается, а вот информация с винчестера никуда не девается. В принципе, сейчас с винчестером конкурируют и съемные носители вроде USB-устройств большой емкости, а вот дискеты и оптические диски уходят в небытие хотя бы по причине их малой емкости и возможности физических повреждений.

Устройства связи

Необязательным классом, хотя в современном мире и очень востребованным, можно назвать и устройства, отвечающие за обеспечение связи как между отдельными компьютерными терминалами, связанными напрямую, так и в сетях (или даже на уровне выхода в Интернет). Здесь из основных устройств можно выделить такие:

  • сетевые адаптеры;
  • маршрутизаторы (модемы, роутеры и т. д.).

Как уже понятно, без них не обойтись при организации сетей (стационарных или виртуальных), при обеспечении доступа во Всемирную паутину. А ведь мало кто сегодня знает, что два компьютера, например, можно соединять посредством кабеля напрямую, как это делалось лет двадцать назад. Конечно, это выглядит несколько непрактично, тем не менее, забывать о такой возможности не стоит, особенно когда нужно копировать большие объемы информации, а подходящего носителя под рукой нет.

Устройства безопасности и защиты данных

Теперь еще об одном типе устройств. Это аппаратные средства защиты, к которым можно отнести, например, «железные» сетевые экраны, называемые еще файрволлами (firewall с английского - «огненная стена»).

Почему-то сегодня большинство юзеров привыкло, что файрволл (он же брэндмауэр) представляет собой исключительно Это не так. При организации сетей с повышенным уровнем безопасности применение таких компонентов не то что желательно, а иногда даже просто необходимо. Согласитесь, ведь программная часть не всегда справляется со своими функциями и может вовремя не отреагировать на вмешательство в работу сети извне, не говоря уже о доступе к хранящейся на жестких дисках компьютеров или серверов.

Взаимодействие программных и аппаратных средств

Итак, аппаратные средства мы вкратце рассмотрели. Теперь несколько слов о том, как они взаимодействуют с программными продуктами.

Согласитесь, у операционных систем, которые и обеспечивают доступ пользователя к вычислительным возможностям ПК, есть свои требования. Современные «операционки» пожирают столько ресурсов, что с устаревшими процессорами, в которых не хватает вычислительной мощности, или при отсутствии необходимого объема оперативной памяти они работать просто не будут. Это, кстати, в равной степени относится и к современным прикладным программам. И, конечно же, это далеко не единственный пример подобного взаимодействия.

Заключение

Напоследок стоит сказать, что аппаратная часть современного компьютера была рассмотрена достаточно кратко, однако сделать выводы о классификации основных элементов системы можно. Кроме того, стоит обратить внимание, что компьютерная техника развивается, а это ведет еще и к тому, что внешних и внутренних устройств разного типа появляется все больше (взять хотя бы виртуальные шлемы). Но что касается базовой конфигурации, в данном случае приведены самые главные компоненты, без которых сегодня невозможно существование ни одной компьютерной системы. Впрочем, здесь по понятным причинам не рассматривались мобильные девайсы, ведь у них устройство несколько отличается от компьютерных терминалов, хотя и имеется довольно много общего.

Архитектура процессоров Intel становится все более ориентированной на ГП, что открывает удивительные возможности для резкого повышения производительности просто за счет разгрузки обработки мультимедиа с ЦП на ГП. Существует немало инструментов, доступных разработчикам для повышения производительности мультимедиа приложений. В числе этих инструментов есть бесплатные и простые в использовании.
В этой публикации вы найдете:

  • Обзор вычислительных архитектур и текущие возможности ГП Intel
  • Реализацию аппаратного ускорения с помощью FFmpeg
  • Реализацию аппаратного ускорения с помощью Intel Media SDK или аналогичного компонента Intel Media Server Studio (в зависимости от целевой платформы)
Если вы испытываете потребность повысить производительность обработки мультимедиа, но не знаете, с чего начать, начните с FFmpeg. Измерьте производительность при программной обработке, затем просто включите аппаратное ускорение и проверьте, насколько изменилась производительность. Затем добавьте использование Intel Media SDK и снова сравнивайте при использовании разных кодеков и в разных конфигурациях.

Вычислительная архитектура: от суперскалярной до разнородной

Чтобы оценить важность развития ГП, давайте начнем с истории совершенствования архитектуры ЦП.
Вернемся в девяностые годы. Первый серьезный этап в развитии - появление суперскалярной архитектуры, в которой была достигнута высокая пропускная способность за счет параллельной обработки на уровне инструкций в пределах одного процессора.


Рисунок 1. Суперскалярная архитектура

Затем, в начале нулевых, появилась многоядерная архитектура (когда в составе одного процессора может быть более одного вычислительного ядра). Однородные ядра (все полностью идентичные) позволяли выполнять одновременно несколько потоков (параллельная обработка на уровне потоков).
При этом производительность многоядерной архитектуры была ограничена из-за целого ряда препятствий.

  • Память: возрастал разрыв между скоростью процессора и скоростью памяти.
  • Параллельная обработка на уровне инструкций (ILP): становилось все труднее обнаруживать доступные для параллельной обработки инструкции в пределах одного потока, чтобы полностью занять ресурсы одного высокопроизводительного ядра.
  • Потребляемая мощность: при постепенном повышении тактовой частоты процессоров потребление электроэнергии росло в геометрической прогрессии.


Рисунок 2. Многоядерная архитектура

Современная разнородная архитектура

В разнородной архитектуре может быть несколько процессоров, использующих общий конвейер данных, которые можно оптимизировать для отдельных функций кодирования, декодирования, преобразования, масштабирования, применения чересстрочной развертки и т. д.

Другими словами, благодаря этой архитектуре мы получили ощутимые преимущества как в области производительности, так и в области потребления электроэнергии, недоступные ранее. На рис. 3 показано развитие ГП за пять последних поколений: графические процессоры приобретают все более важное значение. И при использовании h.264, и при переходе на самые современные кодеки h.265 графические процессоры предоставляют значительную вычислительную мощность, благодаря которой обработка видео с разрешением 4K и даже с более высоким разрешением не только становится возможной, но и выполняется достаточно быстро.


Рисунок 3. Развитие разнородной архитектуры

Поколения производительности ГП

На рис. 4 показано резкое повышение вычислительной мощности всего за несколько поколений, в которых графические процессоры конструктивно размещались на одном кристалле с ЦП. Если в вашем приложении используется обработка мультимедиа, необходимо задействовать разгрузку на ГП, чтобы добиться ускорения в 5 раз или более (в зависимости от возраста и конфигурации системы).


Рисунок 4. Усовершенствование обработки графики в каждом поколении процессоров Intel

Приступая к программированию ГП

На шаге 1 обычно измеряется производительность H.264, чтобы можно было в дальнейшем оценивать изменение производительности по мере доработки кода. FFmpeg часто используется для измерения производительности и для сравнения скорости при использовании аппаратного ускорения. FFmpeg - очень мощный, но при этом достаточно простой в использовании инструмент.

На шаге 2 проводится тестирование с разными кодеками и в разных конфигурациях. Можно включить аппаратное ускорение, просто заменив кодек (замените libx264 на h264_qsv) на использующий Intel Quick Sync Video .

На шаге 3 добавлено использование Intel Media SDK.

Примечание. В этой публикации рассматривается использование этих инструментов в операционной системе Windows*. Если вас интересует реализация для Linux*, см. Доступ к Intel Media Server Studio для кодеков Linux с помощью FFmpeg .

▍Кодирование и декодирование FFmpeg

Начните с H.264 (AVC), поскольку h264: libx264 является программной реализацией в FFmpeg по умолчанию и выдает высокое качество исключительно программными средствами. Создайте собственный тест, затем снова измерьте производительность, сменив кодек с libx264 на h264_qsv. Позднее мы поговорим о кодеках H.265.

Следует отметить, что при работе с видеопотоками приходится выбирать между качеством и скоростью. При более быстрой обработке практически всегда снижается качество и возрастает размер файлов. Вам придется найти собственный приемлемый уровень качества, основываясь на количестве времени, необходимого для кодирования. Существует 11 предустановок для выбора определенного сочетания качества и скорости - от «Самой быстрой» до «Самой медленной». Существует несколько алгоритмов управления скоростью данных:

  • кодирование за 1 проход с постоянной скоростью данных (set -b:v);
  • кодирование за 2 прохода с постоянной скоростью данных;
  • постоянный коэффициент скорости (CRF).
Intel Quick Sync Video поддерживает декодирование и кодирование с помощью ЦП Intel и интегрированного ГП1. Обратите внимание, что процессор Intel должен быть совместимым с Quick Sync Video и с OpenCL*. Дополнительные сведения см. в Заметках о выпуске Intel SDK для приложений OpenCL* . Поддержка декодирования и кодирования встроена в FFmpeg с помощью кодеков с суффиксом _qsv . В настоящее время Quick Sync Video поддерживается следующими кодеками: видео MPEG2, VC1 (только декодирование), H.264 и H.265.

Если вы хотите поэкспериментировать с Quick Sync Video в FFmpeg, необходимо добавить libmfx. Самый простой способ установить эту библиотеку - использовать версию libmfx , упакованную разработчиком lu_zero.
Пример кодирования с аппаратным ускорением Quick Sync Video:

Ffmpeg -I INPUT -c:v h264_qsv -preset:v faster out.qsv.mp4

FFmpeg также может использовать аппаратное ускорение при декодировании с помощью параметра -hwaccel .

Кодек h264_qsv работает очень быстро, но видно, что даже самый медленный режим работы с аппаратным ускорением значительно быстрее только программного кодирования при самом низком качестве и самой высокой скорости.
При тестировании с кодеками H.265 вам потребуется либо получить доступ к сборке с поддержкой libx265, либо собрать собственную версию согласно инструкциям в Руководстве по кодированию для FFmpeg и H.265 или в документации X265 .
Пример H.265:

Ffmpeg -I input -c:v libx265 - preset medium -x265-params crf=28 -c:a aac -strict experimental -b:a 128k output.mp4

Дополнительные сведения об использовании FFmpeg и Quick Sync Video см. в разделе Облачные вычисления Intel QuickSync Video и FFmpeg .

Использование Intel Media SDK (sample_multi_transcode)

Для дальнейшего повышения производительности при использовании FFmpeg необходимо оптимизировать приложение с помощью Intel Media SDK. Media SDK - это межплатформенный интерфейс API для разработки и оптимизации мультимедиа приложений таким образом, чтобы использовать аппаратное ускорение блоков Intel с фиксированными функциями.
  • Если ваши приложения и решения мультимедиа предназначены для клиентских устройств, используйте пакет Intel Media SDK . Его можно загрузить бесплатно .
  • Если же ваши решения предназначены для встроенных систем, серверов или облачных платформ, доступ к Intel Media SDK можно получить с помощью Intel Media Server Studio . У этого решения есть бесплатный выпуск Community Edition и два платных выпуска: Essentials и Professional (их также можно использовать для ускорения перехода на HEVC и 4K/UHD).
Чтобы начать работать с Intel Media SDK, достаточно выполнить несколько простых действий:
  1. Загрузите Intel Media SDK для целевого устройства.
  2. Загрузите учебные руководства и прочтите их, чтобы понять, как настраивать программное обеспечение с помощью SDK.
  3. Установите Intel Media SDK. Если вы используете Linux, см. руководство по установке для Linux .
  4. Загрузите образец кода SDK , чтобы поэкспериментировать с уже скомпилированными образцами приложений.
  5. Соберите и запустите приложение Video Transcoding: sample_multi_transcode
Команды аналогичны командам FFmpeg. Примеры:

VideoTranscoding_folder\_bin\x64>\sample_multi_transcode.exe -hw -i::h264 in.mpeg2 -o::h264 out.h264
VideoTranscoding_folder\_bin\x64>\sample_multi_transcode.exe -hw -i::h265 in.mpeg2 -o::h265 out.h265

Обратите внимание, что для использования аппаратного ускорения необходимо указать параметр -hw в списке аргументов.
Этот пример также работает с декодером и кодировщиком HEVC (h.265), но его необходимо устанавливать из выпуска Intel Media Server Studio Pro.
Существует множество параметров, которые можно указывать в командной строке. С помощью параметра -u можно задать целевое использование (TU), как при использовании предустановок FFmpeg. TU = 4 используется по умолчанию. На рис. 5 показаны показатели производительности при разных настройках TU.


Рисунок 5. Примеры характеристик производительности H264 по отношению к целевому использованию

Используйте другие программные средства Intel
Для дальнейшей доработки кода можно использовать средства оптимизации и профилирования Intel, в том числе

HyperCard - первый продуманный и удобный авторский инструмент для работы с Multimedia, поскольку имеет аппарат ссылок на видео- и аудиоматериалы, цветную графику, текст с его озвучиванием

Мультимедиа - это интерактивная технология, обеспечивающая работу с неподвижными изображениями, видеоизображением, анимацией, текстом и звуковым рядом. Одним из первых инструментальных средств создания технологии мультимедиа явилась гипертекстовая технология, которая обеспечивает работу с текстовой информацией, изображением, звуком, речью. В данном случае гипертекстовая технология выступала в качестве авторского программного инструмента.

Появлению систем мультимедиа способствовал технический прогресс: возросла оперативная и внешняя память ЭВМ, появились широкие графические возможности ЭВМ, увеличилось качество аудио-видеотехники, появились лазерные компакт-диски и др.

Теле-, видео- и большинство аудиоаппаратуры в отличие от компьютеров имеют дело с аналоговым сигналом. Поэтому возникли проблемы стыковки разнородной аппаратуры с компьютером и управления ими.

Были разработаны звуковые платы (Sound Blaster), платы мультимедиа, которые аппаратно реализуют алгоритм перевода аналогового сигнала в дискретный. К компакт-дискам было подсоединено постоянное запоминающее устройство (CD-ROM).

Для хранения изображения неподвижной картинки на экране с разрешением 512 х 482 точек (пикселей) требуется 250 Кбайт. При этом качество изображения - низкое. Потребовалась разработка программных и аппаратных методов сжатия и развертки данных. Такие устройства и методы были разработаны с коэффициентом сжатия 100:1 и 160:1. Это позволило на одном компакт-диске разместить около часа полноценного озвученного видео. Наиболее прогрессивными методами сжатия и развертки считаются IPEG и MPEG.

Стив Джобс в 1988 г. создал принципиально новый тип персонального компьютера –NeХТ, у которого базовые средства систем мультимедиа заложены архитектуру, аппаратные и программные средства. Были применены новые мощные центральные процессоры 68030 и 68040, процессор обработки сигналов DSP, который обеспечивал обработку звуков, изображений, синтез и распознавание речи, сжатие изображения, работу с цветом. Объем оперативной памяти равнялся 32 Мбайтам, использовались стираемые оптические диски, стандартно встроенные сетевые контроллеры, которые позволяют подключаться в сеть, обеспечены методы сжатия, развертки и т.д. Объем памяти винчестера -105 Мбайт и 1,4 Гбайт.

Технология работы с NeXT - это новый шаг в общении человека с машиной. До сих пор работали с интерфейсом WIMP (окно, образ, меню, указатель). NeXT дает возможность работать с интерфейсом SILK (речь, образ, язык, знания). В состав NeXT входит система электронной мульти медиапочты, позволяющая обмениваться сообщениями типа речи, текста, графической информации и т.д.

Многие операционные системы поддерживают технологию мультимедиа: Windows, начиная с версии 3.1, DOS 7.0, OS/2 и др. Операционная система Windows-95 включила аппаратные средства поддержки мультимедиа, что позволяет пользователям воспроизводить оцифрованное видео, аудио, анимационную графику, подключать различные музыкальные синтезаторы и инструменты. В Windows-95 разработана специальная версия файловой системы для поддержки высококачественного воспроизведения звука, видео и анимации. Файлы мультимедийной информацией хранятся на CD-ROM, жестком диске или на сетевом сервере. Оцифрованное видео обычно хранится в файлах с расширением AVI, аудиоинформация - в файлах с расширением WAV, аудио в форме интерфейса MIDI - в файлах с расширением MID. Для их поддержки разработана файловая подсистема, обеспечивающая передачу информации с CD-ROM с оптимальной скоростью, что существенно при воспроизведении аудио- и видеоинформации.

Даже из такого краткого перечисления возможностей технологии мультимедиа видно, что идет сближение рынка компьютеров, программного обеспечения, потребительских товаров и средств производства того и другого. Наблюдается тенденция развития мультимедиа-акселераторов. Мультимедиа-акселератор - программно-аппаратные средства, которые объединяют базовые возможности графических акселераторов с одной или несколькими мультимедийными функциями, требующими обычно установки в компьютер дополнительных устройств. К мультимедийным функциям относятся цифровая фильтрация и масштабирование видео, аппаратная цифровая сжатие-развертка видео, ускорение графических операций, связанных с трехмерной графикой (3D), поддержка «живого» видео на мониторе, наличие композитного видеовыхода, вывод ТV-сигнала (телевизионного) на монитор. Графический акселератор также представляет собой программно-аппаратные средства ускорения графических операций: перенос блока данных, закраска объекта, поддержка аппаратного курсора. Происходит развитие микросхемотехники с целью увеличения производительности электронных устройств и минимизации их геометрических размеров. Микросхемы, выполняющие функции компонентов звуковой платы, объединяются на одной микросхеме размером со спичечный коробок. И предела этому нет.

К 90-м гг. было разработано более 60 пакетов программ с технологией мультимедиа. При этом стандарта не существовало, и в этом же году фирмы Microsoft и IBM одновременно предложили два стандарта. IBM предложила стандарт Ultimedia, a Microsoft - MPC. Остальные фирмы-производители стали разрабатывать пакеты программ на основе этих стандартов. В настоящее время используется стандарт МРС-2, кроме того, разработаны стандарты на приводы CD-RQM, Sound Blaster - звуковые карты, МIDI-интерфейс - стандарт для подключения различных музыкальных синтезаторов, DCI-интерфейс - интерфейс с дисплейными драйверами, позволяющими воспроизводить полноэкранную видеоинформацию, MCI-интерфейс - интерфейс для управления различными мультимедийными устройствами, стандарты на графические адаптеры. Фирма Apple совместно с FujiFilm разработали первый промышленный стандарт 1ЕЕЕР1394 для разработки набора микросхем Fire Wire, позволяющий оснастить цифровым интерфейсом многие потребительские товары, такие как видеокамера, для использования их в технологии мультимедиа.

Появление систем мультимедиа произвело революцию в таких областях, как образование, компьютерный тренинг, бизнес, и в других сферах профессиональной деятельности. Технология мультимедиа создала предпосылки для удовлетворения растущих потребностей общества. Позволила заменить техноцентрический подход (планирование индустрии зависит от прогноза возможных технологий) на антропоцентрический подход (индустрия управляется рынком). Дает возможность динамически отслеживать индивидуальные запросы мирового рынка, что отражается в тенденции перехода к мелкосерийному производству. Феномен мультимедиа демократизирует научное, художественное и производственное творчество. Именно авторские технологии совместно с сетевыми обеспечили процесс информатизации общества.

В настоящее время мультимедиа-технологии являются бурно развивающейся областью информационных технологий. В этом направлении активно работает значительное число крупных и мелких фирм, технических университетов и студий (в частности IBM, Apple, Motorola, Philips, Sony, Intel и др.). Области использования чрезвычайно многообразны: интерактивные обучающие и информационные системы, САПР, развлечения и др.

Основными характерными особенностями этих технологий являются:

Объединение многокомпонентной информационной среды (текста, звука, графики, фото, видео) в однородном цифровом представлении;

Обеспечение надежного (отсутствие искажений при копировании) и долговечного хранения (гарантийный срок хранения - десятки лет) больших объемов информации;

Простота переработки информации (от рутинных до творческих операций).

Достигнутый технологический базис основан на использовании нового стандарта оптического носителя DVD (Digital Versalite/Video Disk), имеющего емкость порядка единиц и десятков гигабайт и заменяющего все предыдущие: CD-ROM, Video-CD, CD-audio. Использование DVD позволило реализовать концепцию однородности цифровой информации. Одно устройство заменяет аудиоплейер, видеомагнитофон, CD-ROM, дисковод, слайдер и др. В плане представления информации оптический носитель DVD приближает ее к уровню виртуальной реальности.

Многокомпонентную мультимедиа-среду целесообразно разделить на три группы: аудиоряд, видеоряд, текстовая информация.

Аудиоряд может включать речь, музыку, эффекты (звуки типа шума, грома, скрипа и т.д., объединяемые обозначением WAVE (волна) . Главной проблемой при использовании этой группы мультисреды является информационная емкость. Для записи одной минуты WAVE-звука высшего качества необходима память порядка 10 Мбайт, поэтому стандартный объем CD (до 640 Мбайт) позволяет записать не более часа WAVE. Для решения этой проблемы используются методы компрессии звуковой информации.

Другим направлением является использование в мультисреде звуков (одноголосая и многоголосая музыка, вплоть до оркестра, звуковые эффекты) MIDI (Musical Instrument Digitale Interface). В данном случае звуки музыкальных инструментов, звуковые эффекты синтезируются программно-управляемыми электронными синтезаторами. Коррекция и цифровая запись MIDI-звуков осуществляется с помощью музыкальных редакторов (программ-секвенсоров). Главным преимуществом MIDI является малый объем требуемой памяти - 1 минута MIDI-звука занимает в среднем 10 кбайт.

Видеоряд по сравнению с аудиорядом характеризуется ббльшим числом элементов. Выделяют статический и динамический видеоряды.

Статический видеоряд включает графику (рисунки, интерьеры, поверхности, символы в графическом режиме) и фото (фотографии и сканированные изображения).

Динамический видеоряд представляет собой последовательность статических элементов (кадров). Можно выделить три типовых группы:

Обычное видео (life video) - последовательность фотографий (около 24 кадров в секунду);

Квазивидео - разреженная последовательность фотографий (6-12 кадров в секунду);

Анимация - последовательность рисованных изображений. Первая проблема при реализации видеорядов - разрешающая

способность экрана и число цветов. Выделяют три направления:

Стандарт VGA дает разрешение 640 х 480 пикселей (точек) на экране при 16 цветах или 320 х 200 пикселей при 256 цветах;

Стандарт SVGA (видеопамять 512 кбайт, 8 бит/пиксель) дает разрешение 640 х 480 пикселей при 256 цветах;

24-битные видеоадаптеры (видеопамять 2 Мбайт, 24 бит/пиксель) позволяют использовать 16 млн цветов.

Вторая проблема - объем памяти. Для статических изображений один полный экран требует следующие объемы памяти:

В режиме 640 х 480, 16 цветов - 150 кбайт;

В режиме 320 х 200, 256 цветов - 62,5 кбайт;

В режиме 640 х 480, 256 цветов - 300 кбайт.

Такие значительные объемы при реализации аудио- и видеорядов определяют высокие требования к носителю информации, видеопамяти и скорости передачи информации. "

При размещении текстовой информации на CD-ROM нет никаких сложностей и ограничений ввиду большого информационного объема оптического диска.

Основные направления использования мультимедиа-технологий:

Электронные издания для целей образования, развлечения и др.;

В телекоммуникациях со спектром возможных применений от просмотра заказной телепередачи и выбора нужной книги до участия в мультимедиа-конференциях. Такие разработки получили название Information Highway;

Мультимедийные информационные системы («мультимедиа-киоски»), выдающие по запросу пользователя наглядную информацию.

С точки зрения технических средств на рынке представлены как полностью укомплектованные мультимедиа-компьютеры, так и отдельные комплектующие и подсистемы (Multimedia Upgrade Kit), включающие в себя звуковые карты, приводы компакт-дисков, джойстики, микрофоны, акустические системы.

Для персональных компьютеров класса IBM PC утвержден специальный стандарт МРС, определяющий минимальную конфигурацию аппаратных средств для воспроизведения мультимедиа-продуктов. Для оптических дисков CD-ROM разработан международный стандарт (ISO 9660).

Экономика – в конце документа

Проблему медленной работы 1С ИБД можно решить аппаратно и программно. Рассмотрим более подробно каждый из способов более детально.

Во-первых, скорость работы зависит от ее версии. Например, при использовании программы локально проблем со скоростью не возникает. Проблемы, как правило, возникают при использовании сетевых версий. Существует два вида платформ для сетевой работы. Рассмотрим их особенности.

Файл-серверная версия 1С: Предприятие 7.7 использует для подключения к информационной базе данных формат файла DBF. Ее главным преимуществом является то, что она не требует для работы дополнительного программного или аппаратного обеспечения. Однако есть и существенный недостаток. Этот формат был разработан преимущественно для однопользовательских версий, поэтому при увеличении количества пользователей работа программы значительно замедляется, особенно, если кто-то из пользователей запускает процесс, осуществляющий частые запросы к БД, например, построение отчета.

Управление распределенными информационными базами удобно использовать для синхронизации справочника и подготовки баз данных для использования передачи документов другим способом. Помимо этого УРИБ удобно применять в случае низкоскоростной линии передач данных, поскольку файл переноса содержит только данные о выполненных изменениях.

На нижеприведенном графике наглядно изображена зависимость времени реакции файл-серверной версии от количества одновременно работающих в ней пользователей. По мере увеличения количества пользователей работа программы замедляется.

SQL-версия отличается высокой масштабируемостью. Таблицы в ИБД хранятся под управлением Microsoft SQL Server, для которой время реакции программы практически не изменяется, что также изображено на графике. В 1С: Предприятии 8 реализована трехуровневая архитектура «клиент-сервер». В ней «клиент» обращается к серверу 1С, тот - к серверу БД Microsoft SQL Server, а последний - к 1С ИБД. Сервер 1С берет на себя выполнение сложных и объемных задач, после чего «клиент» получает лишь необходимую выборку. Чтобы повысить эффективность работы, необходимо установить сервера 1С и Microsoft SQL Server на разных компьютерах. Это позволит распределить нагрузку и ускорить работу программы.

Аппаратные и программные средства ускорения работы программы 1С

Скорость работы 1С: Предприятия и 1С: Бухгалтерии файл-серверной версии главным образом определяется производительностью клиентских рабочих станций, особенно той, где хранится 1С ИБД. Производительность в свою очередь определяется параметрами оперативной памяти и скоростью дисков. Первым - в большей степени. Поэтому для ускорения работы программ 1С: Предприятие можно установить Citrix Terminal Server или Microsoft Terminal Server. Последний входит в стандартную комплектацию Microsoft Windows 2003 Server. Главным преимуществом данного продукта является принцип обработки информации, что осуществляется не на компьютерах пользователей, а на Терминал сервере. Поэтому программа 1С: Предприятие на компьютерах пользователей не устанавливается, на них поставляется лишь готовая экранная форма, что напоминает работу «облачного» сервиса 1С. Использование Microsoft Windows 2003 Server позволяет снизить требования к производительности каналов связи и компьютерам пользователей. Вся нагрузка ложиться на сервер.

Citrix Terminal Server работает аналогично, с разницей в том, что позволяет использовать не только мощности сервера, но и компьютера пользователя. Преимущество использования Терминал-сервера является в сжатии передаваемой информации, что позволяет работать с 1С не только по локальной сети, но и по сети Интернет.

Организационное решение для ускорения программы 1С

Организационное решение по ускорению работы программы заключается в следующем. Условно все работающих в программе пользователей можно разделить на операционистов и аналитиков. Операционисты занимаются вводом информации и оформлением документов, а аналитики - обрабатывают имеющееся данные для анализа деятельности организации. Для операционистов очень важна быстрая реакция программы на внесенные изменения, тогда как для аналитиков актуальность данных в течение нескольких часов не играет роли.

  • Поскольку торможение программы главным образом вызывает обработка информации, особенно задним числом, поэтому можно предложить аналитикам для работы создавать архивную копию 1С ИБД на локальный диск компьютера.
  • Можно настроить ежедневное резервное копирование базы данных.
  • После построения отчета или выполнения другого объемного процесса лучше закрыть программу, а потом открыть ее снова. Это позволит высвободить память, выделенную операционной системой, и ускорить работу компьютера.
  • Тяжелые процессы, такие как открытие периода, переиндексация документации, перепроведение документов и т. д., лучше запускать непосредственно на сервере, на локальном диске которого хранится каталог с информационной базой данных.

Достоинства вышеперечисленных способов заключается в том, что обменивающиеся базы данных могут быть абсолютно разных конфигураций. При

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!